# Prime numbers in 2D number space

## Prime numbers in 2D number space

In2infinity - 4D Maths
Prime numbers in 2D number space
/

Because we can we don’t have to just take plus one we can have plus one plus two plus three. And what you’re going to see right is hey, look what we’re doing here is we’re actually circling geometry. And once we realise that’s what’s happening with this, with this infinity function, we can map that two points on a geometric function and kind of understand what by altering the, the, the algorithm of plus minus one C could be plus minus two plus minus three. And we can go like plus the first Z might be plus minus one. Then we could have another z which might be plus minus would say first one might be plus one. Second one might be plus two. Next one might be plus one. There’s one plus two. And so when we do something like that, what we’re doing is we’re switching between two types of infinite the we have the Alpha zero, naught point five, yeah, which is that type of infinite. And we’re then switching over to the other side, and we’re adding in the other type of infinite the infinite the whole numbers on the other side. And so we start to find that we can compare reciprocal space and whole number space using the different types of infinite density that would be just one example where we can have that where we’ve got a clear cut ratio of the difference between let’s say, Zed one, which would be the plus on the first on the on the even on the odd sorry, if you like the zero if you like, starts at zero, and then when it goes to the next calculation, we’re going to switch said to the number two let’s say that’s, that’s an example. And so then the new one happens is on the effort count, we’ve gone to ever number one, and so effort now will be an odd number. And we’ll be on the two counts of that. And when we go back to the even effort number, sorry, the effort number at number three, we’re going to switch back and we’re just going to do a plus one at that stage. So that way, we were actually circling geometry when you say hey, how long is it going to take us to get back to the start? And as we circle the geometry, we’re going to find we’re creating certain patterns and these patterns can be also like numerical signatures for things. And then by comparing numerical signatures in the way that we would do with other things. Computers can do that. Very quickly, we might find that we can find new information about where numbers arise in base 10 and correct and make those base 10 corrections. So the geometric function here is is encoded into the fourth dimensional mathematic, the actual algorithm of the mathematic and then we’re just going to lay that into nice geometry. And so that’s really what I’m sort of getting at, we can do that with the other numbers as well. But once we’ve covered those numbers, all of those numbers is not many is it because we don’t need all of them. We just need those. If we’re going to do primes, for example, we just need those prime number codes from you know, 1379. That’s all the ones we need. So we can make comparisons on those. And why is that? Well, because we’re going to use the number five as a comparative code. And we’re going to use a number three as a comparative code. And obviously, because number two in number one is not prime number anyway. And so number two, it takes all the even primes so everything about those discounted anyway, so we’re counting the ones that are discounting things. And we’ve covered the number one anyway in this number 11 Because we’re working in set two sets of base 10 numbers, and we’re decoding through that. And we’re going to use geometric function in order to provide us with shapes that allow us to source the what’s the what are the relationships between these circles as we start to split them into infinity as we start you know, you can you can divide them more and more than so much. So if we wanted to divide take a nine and take take into the into the three again, we could divide that space to another three triangles and create another algorithm to match that. So you get the idea. That way we can begin to map what we call a prime number space. And through that find a geometric algorithms that can help us understand prime numbers more deeply. Anyway, that’s our kind of work in progress still at the moment as you say. And if Yeah, I mean if you have any contribution or anything like that, you know, we do let us know because we always liked enthusiastic mathematicians to get on board with fourth dimensional mathematics. And, you know, we don’t know everything. It’s a new field. And so we’re very excited to be sharing it with you guys. And we hope that you know, you’re enjoying some of that broadcasts. Anyway, my name is Colin Powell from into infinity.com. Do join up with the website and, you know, check out more of the conversation there. In the meantime, I hope you have a great week, and whatever you do, take care, and we’ll catch up with you on the next one. Thank you very much.

## Listen to more podcasts

### Prime number structure

Hi, and welcome to another broadcast from inter infinity, where we’re talking about fourth dimensional mathematics. And today we’re having

Listen Now »

### Prime numbers in 2D number space

Hi, welcome back. This is Colin Power from in2infinity. And today we’re going to be looking at more prime number

Listen Now »

### Prime numbers and zero balance

Okay, welcome, everyone. My name is colin power from in2infinity is a little bit of a supplementary broadcast. I just

Listen Now »